

Ting-Yu Dai

(+1)5128319769 ◊ funnyengineer@utexas.edu ◊ FunnyEngineer ◊ Ting-Yu Dai
www.funnyengineer.com

EDUCATION

Ph.D. Candidate in Sustainable System, <i>University of Texas at Austin</i> — Austin, TX	2021 - Present
Advisors: Prof. Dev Niyogi & Prof. Zoltan Nagy	
MSc in Computer-Aided Engineering, <i>National Taiwan University</i> — Taipei, Taiwan	2019 - 2021
BS in Civil Engineering, <i>National Chiao Tung University</i> — Hsinchu, Taiwan	2015 - 2019

RESEARCH INTERESTS

- Machine Learning
Generative Model, Diffusion Model, Self-supervised Learning, Transformer
- Climate Change
Building Energy Modeling, Climate Modeling, Digital Twin

RESEARCH PROJECTS

PrecipDiff: Leveraging diffusion models to enhance satellite-based precipitation — <i>Diffusion, Downscaling</i>	
[AAAI 2025] The study introduces the first diffusion model for correcting discrepancies among precipitation data, enabling downscaling of satellite estimates from 10 km to 1 km resolution. Experiments in Seattle indicate notable improvements in accuracy and spatial detail, highlighting the efficacy of a computer vision-based approach to enhance precipitation data from satellites.	Feb. 2025
CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling — <i>Transformer, Energy</i> [NeurIPS 2023], Extended to [Applied Energy] Established a temporal fusion transformer to model urban energy demands as a surrogate model for traditional physic-based UBEM methods. CityTFT reached 40 times faster to simulate compared to the physics-based model and 6 times more accurately compared to classic RNN and transformers while predicting in an unseen climate dynamic. (F1 score of 99.98 % while RMSE of loads of 13.57 kWh)	Oct. 2023
UTwin: A digital twin of the UT Campus — <i>Digital Twin, Software Engineering</i>	[BuildSys 2023]
Presented a preliminary digital twin of the UT Austin campus focused on building energy use, integrating various geospatial datasets. Developed a platform to integrate and visualize data from multiple sources like live feeds, historical data, and forecasts.	Nov. 2023
Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters — <i>Ensemble Model, Social Science, Building Energy</i> [Urban Computational Science] Applied a large-scale private smart meter electricity demand data from the City of Austin , combined with publicly available environmental data, and develops an ensemble regression model for long-term daily electricity demand prediction.	Dec. 2022
Generating High-Resolution PM2.5 using a Two-stage Machine Learning Approach with Low-Cost Air Quality Sensors and Satellite Observations — <i>Data Fusion, Air Quality, Remote Sensing</i>	[REF]
[AGU2022 Oral] Developed a two-stage machine learning method to create a ground-level PM2.5 grid dataset by calibrating LCS and using the calibrated PM2.5 to fuse with HRRR(Meteorological data) and AOD values.	Dec. 2022
Modelling high-resolution rainfall extremes in a changing climate — <i>Self-Attention, Rainfall Extremes</i>	[REF]
[MSc Thesis][EGU2021] Implemented an ML-based approach to bridge climate reanalysis data and local rainfall statistics and predicted future rainfall patterns based on future climate.	Apr. 2021

RESEARCH AND INDUSTRY EXPERIENCE

Fujitsu Research of America	San Jose, California
Research Intern — <i>Diffusion, Downscaling</i>	May. 2024 - Aug. 2024
• Working in Converging Technology Lab for a digital climate project	
• Developed PrecipDiff , a novel deep learning framework that leverages diffusion models to correct biases and significantly enhance the resolution of satellite-based precipitation data.	
• This computer vision-based approach is the first to use a diffusion model to resolve inconsistencies between satellite and radar data by learning the residual difference between them.	
• The model successfully downscals precipitation estimates from 10 km to a 1 km , reducing the Root Mean Squared Error (RMSE) by over 67% compared to the original satellite data and improving its quality for weather forecasting.	

NASA, Universities Space Research Association (USRA)

Research Intern – machine learning, air quality, geospatial data

Huntsville, Alabama

May. 2022 - Aug. 2022

- Working with the **NASA Marshall Space Flight Center** research team for a Citizen Science Project.
- Utilized PurpleAir sensor in San Francisco and Los Angeles and developed a machine learning model to calibrate the LCS measurements with the federal equivalent methods which **decrease the MSE from 6.38 to 0.11**.
- Designed a data fusion method to merge meteorology and AOD data into the ground-level PM2.5 concentration and generated an urban gridded PM2.5 dataset in both SF and LA area that contains **over 134 million data points**.

TEACHING EXPERIENCE

National Taiwan University

Teaching Assistant – Computational Statistics for Data Analytics (CIE5140)

Taipei, Taiwan

Sep. 2020 - Jan. 2021

- Assisted Prof. Li-Pen Wang in teaching a upper-level course on data science applications in engineering.
- Conducted weekly office hours and provided support for students on assignments and projects.
- Developed supplementary materials for open data and public geospatial data to enhance students' understanding of data science concepts.

JOURNAL PUBLICATIONS

- [1] **Dai, T.-Y.**, Niyogi, D., Nagy, Z. "CityTFT: A temporal fusion transformer-based surrogate model for urban building energy modeling". In: *Applied Energy* 389 (2025), p. 125712.
- [2] **Dai, T.-Y.**, Radhakrishnan, P., Nweye, K., Estrada, R., Niyogi, D., Nagy, Z. "Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters". In: *Computational Urban Science* 3.1 (2023), p. 20.

CONFERENCE PUBLICATIONS

- [1] **Dai, T.-Y.**, Ushijima-Mwesigwa, H. "PrecipDiff: Leveraging image diffusion models to enhance satellite-based precipitation observations". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 39. 27. 2025, pp. 27932–27939.
- [2] **Dai, T.-Y.**, Dilsiz, A. D., Niyogi, D., Nagy, Z. "A comparison of different deep learning model architectures and training strategy for urban energy modeling". In: *Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation*. 2023, pp. 316–317.
- [3] Lin, C., **Dai, T.-Y.**, Dilsiz, A. D., Crawley, D., Niyogi, D., Nagy, Z. "UTwin: A digital twin of the UT Austin campus". In: *Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation*. 2023, pp. 282–283.
- [4] **Dai, T.-Y.**, Wang, L.-P. "Modelling high-resolution rainfall extremes in a changing climate". In: *EGU General Assembly Conference Abstracts*. 2021, EGU21–2436.
- [5] Wang, L.-P., **Dai, T.-Y.**, He, Y.-T., Chou, C.-C., Onof, C. "pyBL: An open source Python package for stochastic high-resolution rainfall modelling based upon a Bartlett Lewis Rectangular Pulse model". In: *EGU General Assembly Conference Abstracts*. 2021, EGU21–8557.

PROFESSIONAL SERVICE

Conference Workshop Reviewer

ICLR 2024, NeurIPS 2024, ICLR 2025, NeurIPS 2025

Workshops on Tackling Climate Change with Machine Learning

2023 - Present

- Reviewed workshop papers for conferences in NeurIPS and CVPR.

Peer-reviewed Journal Reviewer

- Environmental Data Science
- Journal of Parallel and Distributed Computing

AWARDS & HONORS

• Kolodzey Travel Grant

The 39th Annual AAAI Conference on Artificial Intelligence

Spring 2025

Philadelphia, PA

• George J. Heuer, Jr. Ph.D. Endowed Graduate Fellowship Fund

Graduate Fellowship

Fall 2024

Austin, TX